手机中很多关键测试点,用万用表测量很难确定信号是否正常,此时,必须借助示波器进行测量。示波器是反映信号瞬变过程的仪器,它能把信号波形变化直观显示出来。手机中的脉冲供电信号、时钟信号、数据信号、系统控制信号,QXL/Q、TXI/Q以及部分射频电路的信号等,都能在示波器的荧屏上看到。通过将实测波形与图纸上的标准波形(或平时积累的正常手机波形)作比较,就可以为维修工作提供判断故障的依据。  
一、13MHz时钟和32.768kHz时钟信号波形
1.指导
    手机基准时钟振荡电路产生的13MHz时钟,一方面为手机逻辑电路提供了必要条件,另一方面为频率合成电路提供基准时钟。无13MHz基准时钟,手机将不开机,13MHz基准时钟偏离正常值,手机将不入网,因此,维修时测试该信号十分重要。
手机的13MHz基准时钟电路,主要有两种电路:
    一是专用的13MHzVCO组件,它将13MHz的晶体及变容二极管、三极管、电阻电容等构成的13MHz振荡电路封装在一个屏蔽盒内,组件本身就是一个完整的晶振振荡电路,可以直接输出13MHz时钟信号。现在一些新式机型,如诺基亚3310、8210、8850手机等,使用的基准时钟VCO组件是26MHz,26MHzVCO电路产生的26MHz信号再进行2分频,来产生13MHz信号供其它电路使用。基准时钟VCO组件一般有4个端El:输出端、电源端、AFC控制端及接地端。
    另一种是由一个13MHz石英晶体、集成电路和外接元件构成晶振振荡电路,现在一些机型,如摩托罗拉V998、L2000等,使用的是26MHz晶振,三星A188手机使用的是19.5MHz晶振,电路产生的26MHz或19.5MHz信号再进行2或1.5倍分频,来产生13MHz信号供其它电路使用。
13MHz信号在手机开机后均可方便地测到。
另外,手机中的32.768~z实时时钟信号也可方便地用示波器进行测量,波形为正弦波。
2.操作
    以摩托罗拉T2688手机为例,用示波器测试13MHz时钟信号放大管IC402的4脚输出的13MHz时钟波形。正常情况下,该脚波形是一个幅度为0.8V的正弦波。  
二、发射VCO控制信号
1.指导
    在发射变频电路中,TXVCO输出的信号一路到功率放大电路,另一路TXVCO信号与R)ⅣCO信号进行混频,得到发射参考中频信号;发射己调中频信号与发射参考中频信号在发射变换模块中的鉴相器中进行比较,再经一个泵电路(一个双端输入,单端输出的转换电路),输出一个包含发送数据的脉动直流控制电压信号。去控制TXVCO电路,形成一个闭环回路,这样,由TXVCO电路输出的最终发射信号就十分稳定。在维修不入网、无发射故障时,需要经常测量发射VCO的控制信号,以圈定故障范围。
2.操作  
    以摩托罗拉T2688手机为例,测试发射VCO(U606)的控制信号。
用示波器测试该脚波形时,需拔打“112”以启动发射电路。正常情况下,该脚波形为一幅度1.8Vp-p左右的脉冲信号,周期为4.6ms。波形如图5-4所示。

三、RXUQ、TXUQ信号
1.指导
    维修不入网故障时,通过测量接收机解调电路输出的接收RXUQ信号,可快速判断出是射频接电路故障还是基带单元有故障。MUQ信号波形酷似脉冲波。用示波器可方便地测量。
    真正的接收信号是在脉冲波的顶部。若能看到该信号,则解调电路之前的电路基本没问题。
发射调制信号(TXMOD)一般有4个,也就是常说到的TXFQ信号,它是发信机基带部分加工的“最终产品”。
    使用普通的摸拟示波器测量TXFQ信号时,将示波器的时基开关旋转到最长时间/格,拔打“112”,如果能打通“112”,这时候就可以看到一个光点从左到右移动,如果不能打通“112”,波形是一闪就不再来了。TX-UQ波形与RXUQ类似。  
2.操作
    以摩托罗拉T2688手机为例,用示波器测试中频ICU603的20、21、22、23脚输出的RXUQ信号波形和13、14、15、16脚输入的TXI/Q信号波形。正常波形如图5-5所示。
四、接收使能RXON\发射使能TXON信号
1.指导
    RXON是接收机启闭信号,其作用一是可间接判别手机的硬件好不好?硬件有问题,开机后RXON出现的次数多,持续的时间长。二是可间接判别接收机系统在射频RF部分这一段是否能完成其唯一的目标一将射频信号变为基带信号,完不成,则接收机有问题。
    TXON是发射启闭信号,维修无发射故障机时,测量TXON信号很有必要。如果TXON信号测不出来,说明手机的软件或CPU有问题。如果TXON瞬间可以出来,但仍打不了电话,说明故障己缩小到了发信机范围。
    使用数字存储示波器可方便地测到RXON、TXON信号,测试时要拔打“112”以启动接收和发射电路。
    使用普通的模拟示波器,要将时基开关拨到最长时间/格,测到的信号是一个光点从左向右移动并不断向上跳动。
2.操作
以摩托罗拉T2688手机为例,用示波器测试RXON(CPU的70脚)信号。正常的情况下的波形如图5—6所示。

五、CPU输出的频率合成器数据SYNDAT\时钟SYNCLK和使能SYNEN(SYNON)信号
1.指导
    CPU通过“三条线” (即CPU输出的频率合成器数据SYNDAT、时钟SYNCLK和使能SYNEN信号)对锁相环发出改变频率的指令,在这三条线的控制下,锁相环输出的控制电压就改变了,用这个己变大或变小了的电压去控制压控振荡器的变容二极管,就可以改变压控振荡器输出的频率。
2.操作
    以摩托罗拉T2688手机为例,测试CPU的59脚(SYNEN)、79脚(SYN-DATA)、80脚(SYN-CLK)信号波形。
正常波形如图5-7所示。

六、卡数据SIMDAT\卡时钟SIMCLK和卡复位SIMRST信号
1.指导
    维修不识卡故障时,通过测量卡数据SI~AT、卡时钟S~CLK和卡复位S~RST信号可快速地确定故障点,卡数据S~DAT、卡时钟S~CLK和卡复位S~RST信号波形类似,均为脉冲信号。
2.操作
以摩托罗拉T2688手机为例,·测试SIM座上的卡数据S~DAT、卡时钟S~CLK和卡复位S~RST信号。
七、显示数据SDATA和时钟SCLK波形
1.指导
CPU通过显示数据SDATA和显示时钟SCLK进行通信,若不正常,手机就不能正常显示,手机开机后就可以测到该波形。
2.操作
以摩托罗拉T2688手机为例,测试CPU的2~11脚输出的显示数据信号波形。正常波形如图5-8所示。

八、受话器两端的信号
1.指导
手要在受话时,用示波器可以方便地受话器两端测到音频波形。
2.操作
以摩托罗拉T2688手机为例,测试爱受话器两端在受话时的信号波形。正常波形如图5-9所示

九、振铃两端的信号
1.指导
将手机设置在铃声状态,在接收到电话时,振铃两端应有音频波形出现(一般为3Vp-p左右)。
2.操作
  测试摩托罗拉T2688手机振铃两端在振铃时的信号波形。
十、照明灯驱动信号  
1.指导  
手机的照明灯电路采用的电路主要有两种方式,一种是采用发光二极管组成的电路,另一种是采用“电致发光板”组成的电路。
下面以爱立信T18手机和爱立信T28手机为例进行说明。
爱立信T18手机的键盘灯电路主要由发光二极管H551一H560,控制开关管V614、V615等元件组成,原理电路如5—10所示。

  发光二极管的点亮和熄灭是由微处理器LED3K信号(CPU的69脚)来控制的,使开关管V614、V615导通,从而使发光二极管点亮。
键盘灯驱动信号(CPU的69脚)波形如图5-11所示。波形幅度为3Vp-p左右,周期为16.4us。
  从波形图中可以看出,CPU的69脚发出的驱动信号是脉冲式的,而不是直流电压,但为什么没看见发光二极管一亮一暗呢?这是利用了人眼的“视觉暂留”的特点,也就是说,人眼看到了一个光,光消失之后的很短时间内,眼睛里仍留着那个光。另一方面,发光二极管还没有完全无光,电流又流过了它,又要发光,这样看上去灯就一直亮着。
  爱立信T28手机的键盘和LCD照明灯电路较为特殊,它采用了“电致发光”技术,发光的原理是:荧光粉在交变电场的作用下被激发而发出光来,电致发光可发出红色、蓝色或绿色的光,T28手机发出的光是绿色。
  T28手机较为省电,很大程度上取决于该机采用了“电致发光”技术,一般手机的发光二极管有几个,一亮起来要耗电50mA左右,而T28手机只耗电10mA左右。
电致发光需要的驱动电压较高,T28手机采用了170V峰·峰值的双向三角波,由N750的6、8脚产生。电路如图5—12所示。 
N750的6、8脚波形如图5-13所示。波形幅度为170Vp-p左右,周期为4ms。
以摩托罗拉T2688手机为例测试CPU的134脚输出的背景灯点亮控制信号波形。波形如图5-14所示。

十一、脉宽调制信号(PWM)
1.指导
    手机中脉宽调制信号不多,脉宽调制信号的特点是,波形一般为矩形波,脉宽占空比不同,经外电路滤波的电压也不同,此信号也能方便地用示波形测量。如爱立信T28手机的显示对比度控制电路就采用了脉宽调制控制方式。D600的M13、B14脚输出的信号即为脉宽调制信号,M13脚(在C636电容上测)波形如图5-15所示。

波形幅度为3Vp-p左右,图中虚线为对比度变化时所出现的波形。
  以爱立信T28手机为例,测试M13脚(在C636电容上测)的PWM波形。