过去led只能拿来做为状态指示灯的时代,其封装散热从来就不是问题,但近年来led的亮度、功率皆积极提升,并开始用于背光与电子照明等应用后,led的封装散热问题已悄然浮现。
上述的讲法听来有些让人疑惑,今日不是一直强调led的亮度突破吗?2003年lumileds lighting公司roland haitz先生依据过去的观察所理出的一个经验性技术推论定律,从1965年第一个商业化的led开始算,在这30多年的发展中,led约每18个月~24个月可提升一倍的亮度,而在往后的10年内,预计亮度可以再提升20倍,而成本将降至现有的1/10,此也是近年来开始盛行的haitz定律,且被认为是led界的moore(摩尔)定律。
依据haitz定律的推论,亮度达100lm/w(每瓦发出100流明)的led约在2008年~2010年间出现,不过实际的发展似乎已比定律更超前,2006年6月日亚化学工业(nichia)已经开始提供可达100lm/w白光led的工程样品,预计年底可正式投入量产。
haitz定律可说是led领域界的moore定律,根据roland haitz的表示,过去30多年来led几乎每18~24个月就能提升一倍的发光效率,也因此推估未来的10年(2003年~2013年)将会再成长20倍的亮度,但价格将只有现在的1/10。(图片来源:lumileds.com)
不仅亮度不断提升,led的散热技术也一直在提升,1992年一颗led的热阻抗(thermal resistance)为 360℃ /w,之后降至 125℃ /w、 75℃ /w、 15℃ /w,而今已是到了每颗 6℃ /w~ 10℃ /w的地步,更简单说,以往led每消耗1瓦的电能,温度就会增加 360℃ ,现在则是相同消耗1瓦
电能,温度却只上升 6℃ ~ 10℃ 。
■少颗数高亮度、多颗且密集排布是增热元凶
既然亮度效率提升、散热效率提升,那不是更加矛盾?应当更加没有散热问题不是?其实,应当更严格地说,散热问题的加剧,不在高亮度,而是在高功率;不在传统封装,而在新封装、新应用上。
首先,过往只用来当指示灯的led,每单一颗的点亮(顺向导通)电流多在5ma~30ma间,典型而言则为20ma,而现在的高功率型led(注1),则是每单一颗就会有330ma~ 1a 的电流送入,「每颗用电」增加了十倍、甚至数十倍(注2)。
注1:现有高功率型led的作法,除了将单一发光裸晶的面积增大外,也有采行将多颗裸晶一同封装的作法。事实上有的白光led即是在同一封装内放入红、绿、蓝3个原色的裸晶来混出白光。
注2:虽然各种led的点亮(顺向导通)电压有异,但在此暂且忽略此一差异。
在相同的单颗封装内送入倍增的电流,发热自然也会倍增,如此散热情况当然会恶化,但很不幸的,由于要将白光led拿来做照相手机的闪光灯、要拿来做小型照明用灯泡、要拿来做投影机内的照明灯泡,如此只是高亮度是不够的,还要用上高功率,这时散热就成了问题。
上述的led应用方式,仅是使用少数几颗高功率led,闪光灯约1~4颗,照明灯泡约1~8颗,投影机内10多颗,不过闪光灯使用机会少,点亮时间不长,单颗的照明灯泡则有较宽裕的周遭散热空间,而投影机内虽无宽裕散热空间但却可装置散热风扇。
图中为ingan与alingap两种led用的半导体材料,在各尖峰波长(光色)下的外部量子化效率图,虽然最理想下可逼近40%,但若再将光取效率列入考虑,实际上都在15%~25%间,何况两种材料在更高效率的部分都不在人眼感受性的范畴内,范畴之下的仅有20%。
可是,现在还有许多应用是需要高亮度,但又需要将高亮度led密集排列使用的,例如交通号志灯、讯息看板的走马灯、用led组凑成的电视墙等,密集排列的结果便是不易散热,这是应用所造成的散热问题。
更有甚者,在液晶电视的背光上,既是使用高亮度led,也要密集排列,且为了讲究短小轻薄,使背部可用的散热设计空间更加拘限,且若高标要求来看也不κ褂蒙⑷确缟龋蛭缟鹊某吃由嵊跋斓缡庸凵偷钠肺肚樾鳌?br>
■散热问题不解决有哪些副作用?
好!倘若不解决散热问题,而让led的热无法排解,进而使led的工作温度上升,如此会有什么影响吗?关于此最主要的影响有二:(1)发光亮度减弱、(2)使用寿命衰减。
举例而言,当led的p-n接面温度(junction temperature)为 25℃ (典型工作温度)时亮度为100,而温度升高至 75℃ 时亮度就减至80,到 125℃ 剩60,到 175℃ 时只剩40。很明显的,接面温度与发光亮度是呈反比线性的关系,温度愈升高,led亮度就愈转暗。
温度对亮度的影响是线性,但对寿命的影响就呈指数性,同样以接面温度为准,若一直保持在 50℃ 以下使用则led有近20,000小时的寿命, 75℃ 则只剩10,000小时, 100℃ 剩5,000小时, 125℃ 剩2,000小时, 150℃ 剩1,000小时。温度光从 50℃ 变成2倍的 100℃ ,使用寿命就从20,000小时缩成1/4倍的5,000小时,伤害极大。
■裸晶层:光热一体两面的发散源头:p-n接面
关于led的散热我们同样从最核心处逐层向外讨论,一起头也是在p-n接面部分,解决方案一样是将电能尽可能转化成光能,而少转化成热能,也就是光能提升,热能就降低,以此来降低发热。
如果更进一步讨论,电光转换效率即是内部量子化效率(internal quantum efficiency;iqe),今日一般而言都已有70%~90%的水准,真正的症结在于外部量子化效率(external quantum efficiency;eqe)的低落。
以lumileds lighting公司的luxeon系列led为例,tj接面温度为 25℃ ,顺向驱动电流为350ma,如此以ingan而言,随着波长(光色)的不同,其效率约在5%~27%之间,波长愈高效率愈低(草绿色仅5%,蓝色则可至27%),而alingap方面也是随波长而有变化,但却是波长愈高效率愈高,效率大体从8%~40%(淡黄色为低,橘红最高)。
从lumileds公司luxeon系列led的横切面可以得知,硅封胶固定住led裸晶与裸晶上的荧光质(若有用上荧光质的话),然后封胶之上才有透镜,而裸晶下方用焊接(或导热膏)与硅子镶嵌芯片(silicon sub-mount chip)连接,此芯片也可强化esd静电防护性,往下再连接散热块,部分led也直接裸晶底部与散热块相连。(图片来源:lumileds.com)
lumileds公司luxeon系列led的裸晶采行覆晶镶嵌法,因此其蓝宝石基板变成在上端,同时还加入一层银质作为光反射层,进而增加光取出量,此外也在silicon submount内制出两个基纳二极管(zener diode),使led获得稳压效果,使运作表现更稳定。
由于增加光取出率(extraction efficiency,也称:汲光效率、光取效率)也就等于减少热发散率,等于是一个课题的两面,而关于光取出率的提升请见另一篇专文:高亮度led之「封装光通」原理技术探析。在此不再讨论。
■裸晶层:基板材料、覆晶式镶嵌
如何在裸晶层面增加散热性,改变材质与几何结构再次成为必要的手段,关于此目前最常用的两种方式是:1.换替基板(substrate,也称:底板、衬底,有些地方也称为:carrier)的材料。2.经裸晶改采覆晶(flip-chip,也称:倒晶)方式镶嵌(mount)。
先说明基板部分,基板的材料并不是说换就能换,必须能与裸晶材料相匹配才行,现有algainp常用的基板材料为gaas、si,ingan则为sic、sapphire(并使用aln做为缓冲
为了强化led的散热,过去的fr4印刷电路板已不敷应付,因此提出了内具金属核心的印刷电路板,称为mcpcb,运用更底部的铝或铜等热传导性较佳的金属来加速散热,不过也因绝缘层的特性使其热传导受到若干限制。(制图:郭长佑)
对光而言,基板不是要够透明使其不会阻碍光,就是在发光层与基板之间再加入一个反光性的材料层,以此避免「光能」被基板所阻碍、吸收,形成浪费,例如gaas基板即是不透光,因此再加入一个dbr(distributed bragg reflector)反射层来进行反光。而sapphire基板则是可直接反光,或透明的gap基板可以透光。
除此之外,基板材料也必须具备良好的热传导性,负责将裸晶所释放出的热,迅速导到更下层的散热块(heat slug)上,不过基板与散热块间也必须使用热传导良好的介接物,如焊料或导热膏。同时裸晶上方的环氧树脂或硅树脂(即是指:封胶层)等也必须有一定的耐热
能力,好因应从p-n接面开始,传导到裸晶表面的温度。
除了强化基板外,另一种作法是覆晶式镶嵌,将过去位于上方的裸晶电极转至下方,电极直接与更底部的线箔连通,如此热也能更快传导至下方,此种散热法不仅用在led上,现今高热的cpu、gpu也早就采行此道来加速散热。
■从传统fr4 pcb到金属核心的mcpcb
将热导到更下层后,就过去而言是直接运用铜箔印刷电路板(printed circuit board;pcb)来散热,也就是最常见的fr4印刷电路基板,然而随着led的发热愈来愈高,fr4印刷电路基板已逐渐难以消受,理由是其热传导率不够(仅0.36w/m.k)。
为了改善电路板层面的散热,因此提出了所谓的金属核心的印刷电路板(metal core pcb;mcpcb),即是将原有的印刷电路板附贴在另外一种热传导效果更好的金属上(如:铝、铜),以此来强化散热效果,而这片金属位在印刷电路板内,所以才称为「metal core」,mcpcb的热传导效率就高于传统fr4 pcb,达1w/m.k~2.2w/m.k。
不过,mcpcb也有些限制,在电路系统运作时不能超过 140℃ ,这个主要是来自介电层(dielectric layer,也称insulated layer,绝缘层)的特性限制,此外在制造过程中也不得超过 250℃ ~ 300℃ ,这在过锡炉时前必须事先了解。
附注:虽然铝、铜都是合适的热导热金属,不过碍于成本多半是选择铝材质。
ims强化mcpcb在绝缘层上的热传导
mcpcb虽然比fr4 pcb散热效果佳,但mcpcb的介电层却没有太好的热传导率,大体与fr4 pcb相同,仅0.3w/m.k,成为散热块与金属核心板间的传导瓶颈。
为了改善此一情形,有业者提出了ims(insulated metal substrate,绝缘金属基板)的改善法,将高分子绝缘层及铜箔电路以环氧方式直接与铝、铜板接合,然后再将led配置在绝缘基板上,此绝缘基板的热传导率就比较高,达1.1~2w/m.k,比之前高出3~7倍的传导效率。
更进一步的,若绝缘层依旧被认为是导热性不佳,也有直接让led底部的散热块,透过在印刷电路板上的穿孔(through hole)作法,使其直接与核心金属接触,以此加速散热。此作法很耐人寻味,因为过去的印刷电路板不是为插件组件焊接而凿,就是为线路绕径而凿,如今却是为散热设计而凿。
结尾
除了mcpcb、mcpcb+ims法之外,也有人提出用陶瓷基板(ceramic substrate),或者是所谓的直接铜接合基板(direct copper bonded substrate,简称:dbc),或是金属复合材料基板。无论是陶瓷基板或直接铜接合基板都有24~170w/m.k的高传导率,其中直接铜接合基板更允许制程温度、运作温度达 800℃ 以上,不过这些技术都有待更进一步的成熟观察。
philips公司的彩色动态式led照明模块,四组灯泡内各有一个1w的高亮度、高功率led,且分别是红、绿、蓝、琥珀等四种颜色,主要用于购物场所的气氛照明、墙壁色调的改变、建筑物的户外特效照明等
网友评论